

www.elsevier.com/locate/ejphar

Activity of diadenosine polyphosphates at P2Y receptors stably expressed in 1321N1 cells

Kalpana Patel a, *, Ashley Barnes a, Janet Camacho b, Clare Paterson c, Robert Boughtflower c, Diane Cousens ^a, Fiona Marshall ^a

^a Department of Molecular Pharmacology, GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK ^b Department of Molecular Discovery, GlaxoSmithKline, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK ^c Department of Analytical Technology, GlaxoSmithKline, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK

Received 3 May 2001; received in revised form 17 August 2001; accepted 13 September 2001

Abstract

The selectivities of the diadenosine polyphosphates (Ap_nAs, n = 2-6) at the human P2Y₁, P2Y₂, P2Y₄, P2Y₆ and P2Y₁₁ receptors stably expressed in 1321N1 human astrocytoma cells was determined using a Fluorescence Imaging Plate Reader (FLIPR) to measure intracellular Ca^{2+} mobilisation. The rank order of agonist potencies at $P2Y_1$ were: $ADP > P^1, P^3$ -diadenosine triphosphate $(Ap_3A) >$ P^{1},P^{3} -diadenosine hexaphosphate $(Ap_{6}A) = P^{1},P^{3}$ -diadenosine diphosphate $(Ap_{2}A) \gg P^{1},P^{3}$ -diadenosine pentaphosphate $(Ap_{5}A)$. P^1 , P^3 -diadenosine tetraphosphate (Ap₄A) was inactive up to 1 mM. The rank order of agonist potencies at $P2Y_2$ were: $UTP > Ap_4A \gg$ $Ap_6A > Ap_5A > Ap_3A \gg Ap_2A$. The Ap_4A concentration response curve appeared to be bi-phasic. At $P2Y_4$ all the Ap_nA s tested were inactive as agonists. At P2Y₆, only Ap₃A and Ap₅A showed significant agonist activity. At P2Y₁₁, only Ap₄A showed significant agonist activity. Ap, As were inactive as antagonists of the P2Y1, P2Y2, P2Y4, P2Y6 and P2Y11 receptors. At P2Y4, however, the Ap, As potentiated the UTP response. © 2001 Elsevier Science B.V. All rights reserved.

Keywords: Diadenosine polyphosphate; P2Y receptor; FLIPR; G-protein coupled receptor

1. Introduction

Diadenosine polyphosphates (Ap_nAs, where n = 2-7) belong to a group of dinucleoside polyphosphate molecules. They are derived from ATP and consist of two adenosine molecules linked by two to seven phosphate groups (Baxi and Vishwanatha, 1995). P¹,P³-diadenosine diphosphate (Ap₂A), P¹,P³-diadenosine triphosphate (Ap₃A), P¹,P³-diadenosine tetraphosphate (Ap₄A), P¹,P³-diadenosine pentaphosphate (Ap₅A), P¹,P³-diadenosine hexaphosphate (Ap_6A) and P^1,P^3 -diadenosine heptaphosphate Ap_7A are all naturally occurring (Jankowski et al., 1999, 2001; Flores et al., 1999).

As well as having intracellular activities, Ap, As are thought to be endogenous regulator molecules of P2 receptors (Kisselev et al., 1998) activating both P2Y and P2X receptors. Ap, As have been shown to co-localise with

E-mail address: kp16571@gsk.com (K. Patel).

ATP and acetylcholine in secretory granules of nerve terminals (Miras-Portugal et al., 1998).

Using heterologously expressed receptors, agonist activity of Ap₃A has been reported at the chick P2Y₁ (Pintor et al., 1996), human P2Y₂ (Lazarowski et al., 1995) and rat P2X₁ and P2X₃ receptors (Wildman et al., 1999). Ap₄A has been reported as an agonist at the chick and human P2Y₁ (Pintor et al., 1996; Schachter et al., 1996), human P2Y₂ (Lazarowski et al., 1995) and rat P2Y₄ (Bogdanov et al., 1998), P2X₂ (Pintor et al., 1996), P2X₁, P2X₃, and P2X₄ receptors (Wildman et al., 1999).

Ap₅A has agonist activity at rat P2X₁ and P2X₃ receptors (Wildman et al., 1999) and Ap₆A at rat P2X₁, P2X₃ and P2X₄ receptors (Wildman et al., 1999). Ap₂A is less well studied and Ap₇A has only recently been discovered (Jankowski et al., 1999).

The activity of the Ap, As at endogenous receptors expressed in cell lines or isolated tissue preparations is less clear. Results from these experiments are conflicting and can be influenced by: contamination of commercially available Ap, As with mononucleotides (Conant et al., 1998); incorrect identification of P2 receptor subtypes

Corresponding author. Tel.: +44-1438-768009; fax: +44-1438-763232.

(Vigne et al., 2000); Ap_nA activity at unidentified novel receptors (Pintor and Miras-Portugal, 2000); and pharmacological differences between orthologues (Kennedy et al., 2000; Wildman et al., 1999).

The pharmacological profiles of ligands at an individual receptor may differ depending on the readout used. This has been seen with the human P2Y₄ receptor where production of inositol phosphate shows ATP to be a full agonist with low potency (Nicolas et al., 1996) or a partial agonist (Communi et al., 1995, 1996) relative to UTP. Measurements of intracellular Ca²⁺ mobilisation show ATP to be inactive (Kennedy et al., 2000). Furthermore, different pharmacological profiles of various ligands have been obtained for the same receptor using different expression systems. This has been seen with the CysLT₂ receptor where the rank order of ligand potencies for this receptor changes when it is expressed in either *Xenopus laevis* oocytes or human embryonic kidney cells (Heise et al., 2000).

To attempt to circumvent the issues highlighted above, the Ap_nAs have been profiled against five cloned P2Y receptors (P2Y₁, P2Y₂, P2Y₄, P2Y₆ and P2Y₁₁) using a single functional readout, allowing for a more direct comparison of the activity of the Ap_nAs at P2Y receptors. Receptors were stably expressed in 1321N1 human astrocytoma cells and diadenosine polyphosphate-induced increases in cytosolic Ca^{2+} levels ($[Ca^{2+}]_i$) were measured using a Fluorescence Imaging Plate Reader (FLIPR).

2. Material and methods

2.1. Materials

ADP, ATP, UDP, UTP, carbachol, α , β -methyleneATP (α , β -meATP), β , γ -methyleneATP (β , γ -meATP), Ap₂A, Ap₃A, Ap₄A, Ap₅A, Ap₆A, probenicid, and FLUO 3-AM (acetoxymethyl ester derivative of FLUO 3-AM) were purchased from Sigma-Aldrich (Dorset, UK). 2-MethylthioATP (2MeSATP) was purchased from Tocris Cookson (Bristol, UK).

2.2. Cloning of P2Y receptors

The polymerase chain reaction (PCR) was employed to amplify the coding sequences of human $P2Y_1$, $P2Y_2$, $P2Y_4$, $P2Y_6$ and $P2Y_{11}$ from human genomic DNA (Promega, UK), using primers derived from respective Genbank accession numbers U42029, U07225, X91852, X97058 and AF030335. For $P2Y_{11}$, the starting codon was added during the PCR amplification. The amplified products were ligated into pCRscript vector (Stratagene, UK) and sequenced.

For mammalian cell expression, the receptors were ligated into either pCIN or pCIH vectors (Rees et al., 1996).

2.3. Expression of P2Y receptors in 1321N1 cells

1321N1 cells were grown in monolayer culture at 37 °C in 5% CO₂ in Dulbecco's modified Eagle's medium supplemented with 10% foetal calf serum, 2 mM glutamine and 0.44% glucose. Cells were transfected with 5 μg of DNA using lipofectamine (Life Technologies, UK). Neomycin (P2Y₁, P2Y₄, P2Y₆ and P2Y₁₁)- or hygromycin (P2Y₂)-resistant colonies were selected after 2 weeks using 500 μg ml⁻¹ neomycin and 200 μg ml⁻¹ hygromycin, respectively (Life Technologies).

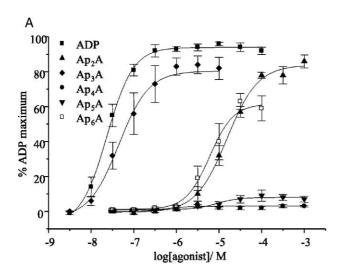
2.4. Ca²⁺ mobilisation assay

Cells were plated into black walled, clear bottom, tissue culture-coated 96-well plates 3 days before use in FLIPR. Cells were incubated with 4 µM FLUO-3AM, at 37 °C in 5% CO₂ for 90 min and then washed once in Tyrodes buffer (145 mM NaCl, 10 mM glucose, 2.5 mM KCl, 1.5 mM CaCl₂, 10 mM HEPES, pH 7.4) containing 2.5 mM probenicid. Basal cell fluorescence (11,000–15,000 FIU) was determined prior to drug additions. Cell fluorescence was monitored ($\lambda_{Ex} = 488$, $\lambda_{Em} = 540$ nm) immediately in the FLIPR following exposure to increasing concentration of agonist. For antagonist studies, the Ap, As were tested at concentrations at which they were shown to be inactive as agonists. This was to ensure that any antagonism observed was not due to depletion of Ca2+ from intracellular stores. Cells were pre-incubated with Ap, As and cell fluorescence measured for 4 min before addition of agonist.

2.5. Data analysis

For each response the peak increase above basal levels in fluorescence was calculated and iteratively curve-fitted using the ALLFIT model (De Lean et al., 1977). Results were expressed as a percentage of the peak response to the most potent naturally occurring nucleotide at the respective receptors studied. Data were expressed as mean \pm S.E.M. or geometric mean with 95% confidence limits for EC values, from three or more experiments performed in duplicate. The data were considered statistically different at $P \leq 0.01$ using a one-way analysis of variance (ANOVA) followed by a Dunnett's multiple comparison test.

2.6. HPLC procedure


The purity of commercially available nucleotides and Ap_nAs was determined using high performance liquid chromatography (HPLC) techniques. A Dionex (Camberley, UK) PAX-500 4.6 mm i.d \times 5 cm HPLC column was used to analyse 10 mM stock solutions of UDP, UTP, ADP, ATP, Ap_2A , Ap_3A , Ap_4A , Ap_5A and Ap_6A . A gradient analysis was performed using the following sol-

vents: solvent A, 2% MeCN; and solvent B, 30% MeCN:1 M Ammonium formate; pH 7.1 (natural pH) (700 mM overall). The flow rate was 2 ml min⁻¹ with a 20:1 split, after UV detection $\lambda = 263$ nm, into the mass spectrometer. Each sample was diluted 1:10 with distilled water to give a concentration of 1 mM; 10 μ l of each diluted sample was injected on to the HPLC column. The molecular weight of each sample and any related impurities were confirmed in the mass spectrometer. The purity of each sample was determined by integration of the UV signal.

3. Results

3.1. Purity of commercially available nucleotides and diadenosine polyphosphates

UDP and ADP were found to contain approximately 7% and 3% of UMP and AMP (based on peak areas in the UV signal), respectively. No allowance was made for the

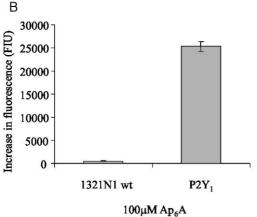
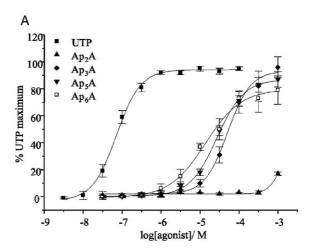


Fig. 1. (A) Concentration effect curves for nucleotides and $Ap_{\it n}As$ stimulating increases in $[Ca^{2+}\,]_i$ in $1321N1/P2Y_1$ cells and (B) activity of $100~\mu M~Ap_6A$ in 1321N1 wild type and $1321N1/P2Y_1$ cells.


Table 1 Potency of nucleotides and Ap_nAs at $P2Y_1$ and $P2Y_2$ receptors for increasing $[Ca^{2+}]_i$.

Compound	P2Y ₁	n_{H}	P2Y ₂	n_{H}
ADP	7.7 ± 0.08	1.5	_	
UTP			7.1 ± 0.07	1.4
Ap_2A	4.9 ± 0.11	1.2	N.E.	
Ap_3A	7.5 ± 0.03	1.2	4.4 ± 0.05	1.4
Ap_4A	N.E.		6.7 ± 0.06^{a}	1.5
Ap_5A	< 4		4.6 ± 0.07	1.2
Ap_6A	5.1 ± 0.26	1.5	4.9 ± 0.10	1.0

Data are expressed as pEC_{50} values (the negative logarithm of the molar concentration of an agonist required to produce 50% the maximal response). Values represent the mean \pm S.E.M. from at least n=3 experiments performed in duplicate.

N.E. = no effect at 100 μ M. $n_{\rm H}$ is the curve slope value.

different UV extinction coefficients of samples (which tends to increase with the lower degree of phosphate substitution), hence, the impurity values are likely to be slightly overestimated. A more detailed analysis was per-

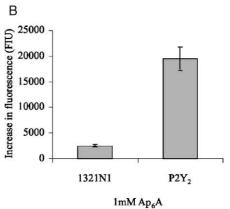


Fig. 2. (A) Concentration effect curves for nucleotides and Ap_nAs stimulating increases in $\left[Ca^{2+}\right]_i$ in $1321N1/P2Y_2$ cells and (B) activity of 1 mM Ap_6A in 1321N1 wild type and $1321N1/P2Y_2$ cells.

 $^{^{}a} = pEC_{50}$ of the first phase of bi-phasic curve.

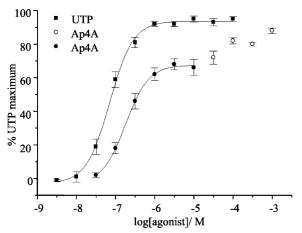


Fig. 3. Concentration effect curve for UTP and Ap₄A at P2Y₂ expressed in 1321N1 cells

formed to specifically assess any low level contamination of ATP in samples of Ap_2A , Ap_3A , Ap_4A , Ap_5A and Ap_6A . By experimentation it was deduced that levels of 0.1% (m/m) were detectable. All Ap_nA samples showed levels of ATP less than 0.5%. There was no detectable evidence of any significant impurities in samples of UTP or ATP.

3.2. Effect of Ap, As on 1321N1 cells

No responses to 100 μ M uridine (UTP, UDP) or adenine (ATP, ADP, α , β -meATP, β , γ -meATP, 2MeSATP) nucleotides were observed in wild type 1321N1 cells. Activation of the endogenously expressed M3 muscarinic receptor with 1 mM carbachol caused an increase in cell fluorescence of 24,132 \pm 2,899 FIU (fluorescence intensity units). Only at a concentration of 1 mM, Ap₃A, Ap₄A and Ap₆A caused a small increase [Ca²⁺]_i. These responses represented 3.55 \pm 1.3%, 4.13 \pm 0.9% and 11.02 \pm 1.3% of the maximal response to carbachol, respectively (Fig. 4A). The nonselective P1 receptor agonist *N*-ethylcarboxamidoadenosine (NECA) (10 μ M) was inactive (data not shown).

3.3. Agonist effects of $Ap_n As$ at human $P2Y_1$, $P2Y_2$, $P2Y_4$, $P2Y_6$ and $P2Y_{11}$ receptors

At P2Y₁, Ap₃A was shown to be a full agonist with similar efficacy to ADP. Ap₂A was approximately 1000-fold less potent than ADP. Ap₄A was inactive up to a concentration of 1 mM. The rank order of agonist potencies was: ADP > Ap₃A > Ap₆A > Ap₂A \gg Ap₅A. Ap₆A behaved as a partial agonist with respect to ADP (Fig. 1A, Table 1), reaching 62 \pm 4% of the maximal ADP response;

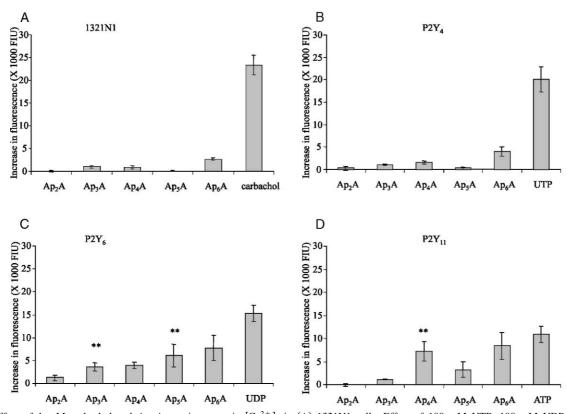


Fig. 4. Effect of 1 mM carbachol and Ap_nAs on increases in $[Ca^{2+}]_i$ in (A) 1321N1 cells. Effect of 100 μ M UTP, 100 μ M UDP, 1 mM ATP, respectively, and 1 mM Ap_nAs on increases in $[Ca^{2+}]_i$ and 1321N1 cells expressing the (B) $P2Y_4$, (C) $P2Y_6$ and (D) $P2Y_{11}$ receptor. * * $P \le 0.01$ relative to control responses.

100 μ M Ap₆A produced an increase in cell fluorescence of 25,345 \pm 1057 FIU compared to 517 \pm 88 FIU in wild type cells (Fig. 1B).

The rank order of agonist potencies for the P2Y₂ receptor was: UTP > $Ap_4A > Ap_6A > Ap_5A > Ap_3A \gg$ Ap₂A. Ap₃A, Ap₅A and Ap₆A were all full agonists with respect to UTP, giving approximately 90–100% of the maximal UTP response (Fig. 2A, Table 1). Ap₂A had minimal activity, only producing $17 \pm 7.4\%$ of the maximum UTP response. The Ap₆A response observed at P2Y₂ was greater than responses seen in wild type cells, with 1 mM Ap₆A producing a sevenfold greater response in the P2Y₂ line (Fig. 2B). The Ap₄A concentration effect curve appeared to be bi-phasic (Fig. 3). This observation, however, was not consistent and was observed in six out of the nine experiments performed. Fitting the data to a two-site model proved difficult since the second phase of the Ap₄ A concentration effect curve did not reach a clear maximum, but in all experiments, 1 mM Ap₄A gave $88 \pm 1.2\%$ of the UTP maximal response. The first phase of the Ap₄A curve (10 nM-10 μ M) gave an EC₅₀ = 0.18 (0.12-0.27) μ M with a slope value of 1.5 and reached $66 \pm 4.7\%$ of the UTP maximal response. Fitting the whole of the Ap₄A concentration effect curve (30 nM-1 mM) to a single-site model (De Lean et al., 1977) gave a nonsigmoidal curve with a slope value of 0.4.

Pre-treatment of cells with 50 ng ml⁻¹ pertussis toxin for 18 h had no effect on either Ap₄A or UTP concentration effect curves (data not shown).

At P2Y₄, UTP caused a concentration-dependent increase in $[Ca^{2+}]_i$ ($pEC_{50} = 7.16 \pm .02$, data not shown) while responses to the Ap_nAs were not significantly different from those observed in wild type cells. At P2Y₆ (pEC_{50} for UDP = 7.06 ± 0.09 , data not shown), only 1 mM Ap_3A and Ap_5A , and at P2Y₁₁ (pEC_{50} for ATP = 4.4 ± 0.12 , data not shown), only 1 mM Ap_4A responses were significantly greater than those in wild type cells (Fig. 4).

3.4. Antagonist effects of $Ap_n As$ at human $P2Y_1$, $P2Y_2$, $P2Y_4$, $P2Y_6$ and $P2Y_{11}$ receptors

 Ap_nAs that were inactive as agonists at the various P2Y receptors were investigated as possible P2Y receptor an-

tagonists. Cells expressing the P2Y₁ receptor were pre-incubated with either 10 μ M Ap₄A or Ap₅A followed by ADP (3 nM–10 μ M). Both Ap₄A and Ap₅A (10 μ M) were unable to antagonise ADP responses; 100 μ M Ap₂A did not antagonise UTP responses in the P2Y₂ line. At P2Y₆, 10 μ M Ap_nAs, and at P2Y₁₁, 100 μ M Ap_nAs did not antagonise a response to an EC₅₀ concentration of UDP or ATP, respectively (Fig. 5A,B). At P2Y₄, 100 μ M of the Ap_nAs caused a potentiation of an EC₅₀ response to UTP (Fig. 5C). Priming cells with 10 nM UTP (a concentration which did not cause a response) did not potentiate subsequent increases in [Ca²⁺]_i evoked by UTP (3 nM–100 μ M) (data not shown).

4. Discussion

When attempting to determine the activity of Ap_nAs at different P2Y receptors, comparison of data from different studies is often difficult since different functional readouts have been used and the purity of the ligands can be called into question. The aim of this study was to use the same assay system (mobilisation of intracellular Ca²⁺) to profile the Ap_nAs at five human P2Y (P2Y₁, P2Y₂, P2Y₄, P2Y₆ and P2Y₁₁) receptors, allowing a more comprehensive comparison between them.

Wild type 1321N1 cells do not respond to adenine nucleotides and are hence commonly used as a host cell line for purinergic receptor expression (Filtz et al., 1994). No responses were seen with either 100 μ M ATP, UTP, UDP, ADP, α,β -meATP, β,γ -meATP, 2MeSATP, nucleotides known to act at subtypes of P2 purinoceptors, or NECA, the nonselective P1 receptor agonist, in 1321N1 cells. Responses were seen with 1 mM Ap₆A and, to a lesser extent, 1 mM Ap₃A and Ap₄A. These could not be due to the activation of known P2X receptors since ATP, α,β -meATP and 2MeSATP were inactive. Possible explanations for these responses could involve the interaction of the Ap_nAs with other proteins in the cell (Kisselev et al., 1998), or that the Ap_nAs have activity at an unidentified novel receptor(s) in this cell line.

The Ap_nAs used here were first studied as agonists. None of the Ap_nAs showed agonist activity at $P2Y_4$. This is in agreement with observations seen by others (Kennedy

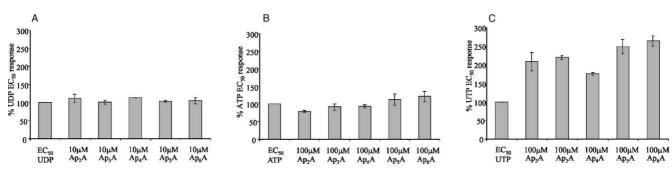


Fig. 5. Effect of Ap_nAs on an EC₅₀ agonist response at (A) P2Y₆, (B) P2Y₁₁ and (C) P2Y₄.

et al., 2000; Communi et al., 1995, 1996). Significant responses at P2Y₆ were only observed with 1 mM Ap₃A and Ap₅A. At P2Y₁₁, previous data have shown Ap₄A and Ap₆A to be inactive, however, these compounds were only tested at 100 μ M for their ability to induce an inositol phosphate response (Communi et al., 1997). Our results also show 100 μ M Ap_nAs to be inactive as agonists at P2Y₁₁ receptors but at 1 mM Ap₄A caused a significant increase in [Ca²⁺]_i levels.

At P2Y₁, the response to Ap_6A was a receptor-mediated event as it was approximately 50 times greater than that observed in wild type cells. In addition, HPLC analysis showed Ap_6A to be pure, so it is unlikely that this response was due to a contaminant. When measuring intracellular Ca^{2+} mobilisation, Ap_6A has previously been shown to be inactive at P2Y₁ and P2Y₂ receptors endogenously expressed in ECV304 cells (Conant et al., 1998). In addition, nucleotides also have a lower potency value in this cell line, suggesting poor receptor coupling and/or low receptor reserve as explanations for these differences.

At P2Y₂, Ap₄A was the most potent of the Ap_nAs tested with a concentration effect curve that appeared to be bi-phasic. This was apparent from the shallow slope value obtained when trying to fit the data to a single site model. There are reports showing that the P2Y₂ receptor is able to couple to both G_i and G_q G-proteins, e.g. the mouse P2Y₂ receptor expressed in *X. laevis* oocytes (Mosbacher et al., 1998) and the P2Y₂ receptor endogenously expressed in cerebral astrocytes (Jimenez et al., 2000). In these experiments, we investigated if the bi-phasic nature of the Ap₄A concentration effect curve was due to the activation of G_i/G_o G-protein coupled receptors. Pertussis toxin had no effect on the Ap₄A response, suggesting that neither phase of the Ap₄A curve resulted from the activation of P2Y₂ receptors coupled to G_i/G_o G-proteins.

The second phase of the Ap_4A concentration effect curve may have been due to a nonspecific interaction of Ap_4A with a nonrelated protein in 1321N1 cells; however, the activity of Ap_4A was different at all the P2Y receptors expressed in the same host cell line, making this explanation unlikely. Alternatively, Ap_4A responses could involve the release of Ca^{2+} from two different intracellular Ca^{2+} pools as shown by Holden et al. (2000). Further experiments are required in order to establish if different pools of intracellular Ca^{2+} contribute to the bi-phasic Ap_4A response observed here.

The possible antagonist actions of the Ap_nAs were then investigated. None of the Ap_nAs had antagonist activity at $P2Y_1$, $P2Y_2$, $P2Y_6$ or $P2Y_{11}$ receptors. In the $P2Y_4$ cell line, $100 \mu M$ of all the Ap_nAs caused a potentiation of the response to UTP. Priming cells with 10 nM UTP (a concentration which did not cause a response) did not potentiate subsequent increases in intracellular Ca^{2+} evoked by UTP (3 $nM-100 \mu M$). In addition, none of the Ap_nAs potentiated subsequent agonist (UDP and ATP respectively) responses at $P2Y_6$ or $P2Y_{11}$. Taken together,

these data suggest that the potentiating effect of the Ap_nAs on UTP-induced Ca^{2+} release is $P2Y_4$ specific.

The potentiating effect seen in this study, pharmacologically termed allosteric modulation, has been described to synthetic molecules modulating the actions of other synthetic or endogenous ligands at a number of G-protein coupled receptors (Birdsall et al., 2000; Gao and Ijzerman, 2000; Guyer et al., 1990). Here we have evidence for a series of endogenous ligands, the Ap_nAs , having potential allosteric modulatory effects on the mode of action of another endogenous ligand, UTP. These preliminary findings need to be investigated further in order to determine if the Ap_nAs are truly behaving as allosteric enhancers.

Our observations differ from those reported by Kennedy et al. (2000) who showed that 10 μ M Ap₄A was unable to antagonise the increase in $[Ca^{2+}]_i$ evoked by UTP at the human P2Y₄ receptor stably expressed in 1321N1 cells. 100 μ M Ap₄A, however, caused an approximate 50% inhibition of an EC₅₀ UTP response. The differences in the observation from both studies may be attributed to the different experimental protocols used. In this study, cells were pre-treated with Ap₄A for 4 min before co-administration of UTP and FLIPR was used to measure changes in $[Ca^{2+}]_i$. In Kennedy's study, cells were super-fused with Ap₄A for 1 min before co-administration of UTP.

To date, radiolabeled nucleotides for P2 receptors lack specificity. They have been shown not only to bind to P2 receptors but to additional protein(s) that do not correspond to known functional P2 receptor subtypes, and to enzymes and transporters (Laubinger and Reiser, 1998; Yu et al., 1999). Hence, P2 receptor binding assays do not offer a reliable and accurate method for pharmacologically determining receptor number. In this study the cell lines used were not controlled for comparable receptor expression and thus a certain degree of caution must be taken when describing the Ap_nAs as full or partial agonists. However, the potency values for a range of nucleotides at the P2Y receptors expressed here are comparable (i.e. in the same molar range) to those reported by others who have used recombinant systems to pharmacologically characterise P2Y receptors (data not shown) (Schachter et al., 1996; Lazarowski et al., 1995; Kennedy et al., 2000; Communi et al., 1997).

In order to obtain a greater understanding of the role of the Ap_nAs in the pathogenesis of disease, a number of experiments are still required. The experiments here have all involved the use of human receptors. This type of study would also be of benefit using different species orthologues profiling both nucleotides and Ap_nAs , as these often show a different rank order of potency at P2-purinoceptors. In addition, the activity of Ap_7A at both P2Y and P2X receptors needs to be defined and the activity of the Ap_nAs at the recently cloned $P2Y_{12}$ (Zang et al., 2000; Hollopeter et al., 2001) receptor requires investigation. These data would significantly aid with the interpretation of responses to P2 receptor ligands in animal models. The

 Ap_nAs profiled here have shown an interesting pattern of selectivity and efficacy amongst the P2Y receptors. From this and the other publications on this series of molecules, it is not unreasonable to suggest that the Ap_nAs are of equal significance to nucleotides as endogenous ligands at P2Y receptors.

The pharmacological characterisation of Ap_nAs at P2Y receptors has been confounded by the use of cell lines expressing endogenous P2 and/or P1 receptors, the use of different isolated tissues, species and assay systems. The purity of commercially available nucleotides has also led to conflicting and confusing data being reported. This study has attempted to eliminate as many inconsistencies as possible using the pharmacological tools available at the time and using a consistent assay system, which determines and compares the selectivity of the Ap_nAs for P2Y receptors.

References

- Baxi, M.D., Vishwanatha, J.K., 1995. Diadenosine polyphosphates: their biological significance. J. Pharmacol. Toxicol. Methods 33, 121–128.
- Birdsall, N.J.M., Farries, T., Gharagoloo, P., Kobayshi, S., Lazareno, S., Sugimoto, M., 2000. Subtype-selective positive cooperative interactions between brucine analogs and acetylcholine at muscarinic receptors: functional studies. Mol. Pharmacol. 55, 778–786.
- Bogdanov, Y.D., Wildman, S.S., Clements, M.P., King, B.F., Burnstock, G., 1998. Molecular cloning and characterization of rat P2Y₄ nucleotide receptor. Br. J. Pharmacol. 124, 428–430.
- Communi, D., Pirotton, S., Parmentier, M., Boeymaems, J.M., 1995.Cloning and functional expression of a human uridine nucleotide receptor. J. Biol. Chem. 270, 30849–30852.
- Communi, D., Motte, S., Boeymanns, J.M., Pirotton, S., 1996. Pharmacological characterisation of the human P2Y₄. Eur. J. Pharmacol. 317, 383–389.
- Communi, D., Govaerts, C., Parmentier, M., Boeynaems, J.M., 1997.
 Cloning of a human purinergic P2Y receptor coupled to phospholipase C and adenylyl cyclase. J. Biol. Chem. 272, 31969–31973.
- Conant, A.R., Fischer, M.J., McLennan, A.G., Simpson, A.W.M., 1998.
 Characterisation of P2 receptors on the human umbilical vein endothelial cell line ECV304. Br. J. Pharmacol. 125, 357–364.
- De Lean, A., Munson, P.J., Rodbard, D., 1977. Simultaneous analysis of families of sigmoidial curves: applications to bioassay, radio-ligand assay, and physiological dose-response curves. Am. J. Physiol. 235, E97–E102.
- Filtz, T.M., Li, Q., Boyer, J.L., Nicholas, R.A., Harden, T.K., 1994. Expression of a cloned P2Y purinergic receptor that couples to phospholipase C. Mol. Pharmacol. 46, 8–14.
- Flores, N.A., Stavrou, B.M., Sheridan, D.J., 1999. The effects of diadenosine polyphosphates on the cardiovascular system. Cardiovasc. Res. 42, 15–26.
- Gao, Z.G., Ijzerman, A.P., 2000. Allosteric modulation of A_{2A} adenosine receptors by amiloride analogues and sodium ions. Biochem. Pharmacol. 60, 669–676.
- Guyer, C.A., Horstman, D.A., Wilson, A.L., Clarke, J.D., Cragoe Jr., E.J., Limbird, L.E., 1990. Cloning, sequencing and expression of the gene encoding the porcine α_2 -adrenergic receptor: allosteric modulation by Na⁺, H⁺, and amiloride analogues. J. Biol. Chem. 265, 17307–17317.
- Heise, C.E., O'Dowd, B.F., Figueroa, J.D., Sawyer, N., Nguyen, T., Im, D.-S., Stocco, R., Bellefeuille, J.N., Abramovitz, M., Cheng, R.,

- Williams Jr., D.L., Zeng, Z., Liu, Q., Ma, L., Clements, M.K., Coulombe, N., Liu, Y., Austin, C.P., George, S.R., O'Neill, G.P., Metters, K.M., Lynch, K.R., Evans, J.F., 2000. Characterisation of the human cysteinyl leukotriene 2 receptor. J. Biol. Chem. 275, 30531–30536.
- Holden, C.P., Haughey, N.J., Dolhun, B., Shepel, P.N., Nath, A., Geiger, J.D., 2000. Diadenosine pentaphosphate increases levels of intracellular calcium in astrocytes by a mechanism involving release from caffeine/ryanodine- and IP3- sensitive stores. J. Nuerosci. Res. 59, 276–282.
- Hollopeter, G., Jantzen, H.M., Vincent, D., Li, G., England, L., Ramakrishnan, V., Yang, R.B., Nurden, P., Nurden, A., Julius, D., Conley, P.B., 2001. Identification of the platelet ADP receptor targeted by antithrombotic drugs. Nature 409, 202–207.
- Jankowski, J., Tepel, M., Van De Giet, M., Tente, I.M., Henning, L., Junker, R., Zidek, W., Schluter, H., 1999. Identification and Characterisation of P¹,P⁷-Di(adenosine-5')-heptaphosphate from human platelets. J. Biol. Chem. 274, 23926–23931.
- Jankowski, J., Hagememann, J., Tepel, M., Van de Giett, M., Stephan, N., Henning, L., Gouni-Berthold, H., Sachinidis, A., Zidek, W., Schluter, H., 2001. Dinucleotides as growth-promoting extracellular mediators. J. Biol. Chem. 276, 8904–8909.
- Jimenez, A.I., Castro, E., Communi, D., Boeynaems, J.-M., Delicado, E.G., Miras-Portugal, M.T., 2000. Coexpression of several types of metabotrophic nucleotide receptors in single cerebellar astrocytes. J. Neurochem. 75, 2071–2079.
- Kennedy, C., Qi, A.-D., Herold, C., Harden, K., Nicholas, R., 2000. ATP, an agonist at the rat P2Y₄ receptor, is an antagonist at the human P2Y₄ receptor. Mol. Pharmacol. 57, 926–931.
- Kisselev, L.L., Justesen, J., Wolfson, A.D., Frolova, L.Y., 1998. Diadenosine oligophosphates (Ap_nA) a class of signalling molecules? FEBS Lett. 427, 157–163.
- Lazarowski, E.R., Watt, W.C., Stutts, M.J., Boucher, R.C., Harden, T.K., 1995. Pharmacological selectivity of clones human P2YU-purinoceptor: potent activation by diadenosine tetraphosphate. Br. J. Pharmacol. 116, 1619–1627.
- Laubinger, W., Reiser, G., 1998. Differential characterisation of binding sites for adenine and uridine nucleotides in membranes from rat lung as possible tools for studying P2 receptors in lung. Biochem. Pharmacol. 55, 687–695.
- Miras-Portugal, M.T., Gualix, J., Pintor, J., 1998. The neurotransmitter role of diadenosine polyphosphates. FEBS Lett. 430, 78–82.
- Mosbacher, J., Maier, R., Fakler, B., Glatz, A., Crespo, J., Bilbe, G., 1998. P2Y receptor subtypes differentially couple to inwardly-rectifying potassium channels. FEBS Lett. 436, 104–110.
- Nicolas, R.A., Watt, W.C., Lazarowski, E.R., Li, Q., Harden, T.K., 1996. Uridine nucleotide selectivity of three phospholipase C-activating P2 receptors: identification of a UDP-selective, a UTP-selective, and an ATP and UTP-specific receptor. Mol. Pharmacol. 50, 224–229.
- Pintor, J., Miras-Portugal, M.T., 2000. Receptors for diadenosine polyphosphates P2_D, P2Y_{ApnA}, P₄ and dinucleotide receptors: are there too many? TIPS 21, 135.
- Pintor, J., King, B.F., Miras-Portugual, M.T., Burnstock, G., 1996. Selectivity and activity of adenine dinucleotides at recombinant P2X₂ and P2Y₁ purinoceptors. Br. J. Pharmacol. 119, 1006–1012.
- Rees, E.S., Coote, J., Stables, J., Goodson, S., Harris, S., Lee, M.G., 1996. Bicistronic vector for the creation of stable cell lines that predisposes all antibiotic-resistant cells to express recombinant protein. BioTechniques 20, 102–110.
- Schachter, J.B., Li, Q., Boyer, J.L., Nicholas, R.A., Harden, T.K., 1996. Second messenger cascade specificity and pharmacological selectivity of the human P2Y1-purinoceptor. Br. J. Pharmacol. 118, 167–173.
- Vigne, P., Breittmayer, J.P., Frelin, C., 2000. Diadenosine polyphosphates as antagonists of the endogenous P2Y₁ receptor in rat brain capillary endothelial cells of the B7 and B10 clones. Br. J. Pharmacol. 129, 1506–1512.
- Wildman, S.S., Brown, S.G., King, B.F., Burnstock, G., 1999. Selectivity

- of diadenosine polyphosphates for the rat P2X receptor subunits. Eur. J. Pharmacol. 367, 119-123.
- Yu, H., Bianchi, B., Metzger, R., Lynch, K.J., Kowaluk, E.A., Jarvis, M.F., Van Biesen, T., 1999. Lack of specificity of [³⁵S]-ATP(S and [³⁵S]-ADPβS as radioligands for ionotropic and metabotropic P2 receptor binding. Drug Dev. Res. 48, 84–93.
- Zang, F.L., Luo, L., Gustafson, E., Lachowicz, J., Smith, M., Qiao, X., Liu, Y.-H., Chen, G., Pramanik, B., Laz, T.M., Palmer, K., Bayne, M., Monsma, F., 2000. ADP is a cognate ligand for the orphan G-protein coupled receptor SP1999. J. Biol. Chem. 276, 8608–8615.